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AERODYNAMIC CHARACTERISTICS O F  A 

MODIFIED CONE-CONICAL- FRUSTUM ENTRY 

CONFIGURATION AT MACH 6.0 

By George C. Ashby, Jr., and W. Frank Staylor 
Langley Research Center 

SUMMARY 

An investigation of the internal arrangement and the stability and control of a modi
fied cone-conical-frustum entry vehicle has been conducted. The internal arrangement 
was made to house eight men in orbit for 24 hours and included a propulsive lift system 
for  hover and landing. The experimental tests were conducted at Mach 6.0 and a Reynolds 
number based on model length of 6.3 X lo6.  Trailing-edge flaps symmetrically arranged 
were used to  t r i m  the vehicle. The results show that the configuration is stable about all 
axes and can be tr immed about a center of gravity at 60 percent of the length with a maxi
mum lift-drag ratio of 1.57 and a static margin of 3.5 percent. Calculations made by 
using a basic Newtonian computer program predicted the forces very well but overesti
mated the moments. 

INTRODUCTION 

Some manned lifting-entry-vehicle concepts are designed to  fly the complete tra
jectory t o  a conventional horizontal landing. In such designs, either the low-speed o r  the 
high-speed aerodynamic characterist ics are usually compromised, because the aerody
namic design requirements in the low-speed and high-speed ranges are in conflict. To 
avoid such compromises, Love (ref. 1)suggested that more attention be devoted t o  lifting-
vehicle concepts in which the entry flight mode and the landing mode were decoupled. 
That is, the vehicle would be designed for  the hypersonic-supersonic portion of the tra
jectory, and the landing would be accomplished by an auxiliary system such as a limp 
paraglider, a stowed rotor,  o r  a propulsive lift system. Love also points out that other 
possible advantages of decoupling, especially with propulsive lift,are brief hover time 
for landing-site selection or close-in decision reversals,  suitability for  emergency landing 
at unprepared sites, near-zero landing velocities (vertical and horizontal), and no major 
night landing problems. 

As a preliminary step in evaluating the feasibility of using propulsive lift in the 
decoupled concept ,realistic packaging requirements for  manned orbital flight including a 



propulsive lift system have been investigated for several  configurations. In addition, 
hypersonic wind-tunnel studies are being conducted to  t r im  and stabilize these configura
tions for the center-of-gravity locations found in the packaging studies. This report p re
sents the aerodynamic data for an ear ly  design concept with lift fans. The vehicle can be 
compactly packaged to provide for an eight-man crew in orbit for  24 hours. The data 
were obtained in the Langley 20-inch Mach 6 tunnel at a Reynolds number 6.3 x lo6 
(based on model length). 

SYMBOLS 

The longitudinal data a r e  referenced to the stability-axis system and the lateral and 
directional data to the body-axis system. The moment coefficients were taken about the 
longitudinal center of gravity (60 percent 1 )  along the center line determined in the pre
liminary packaging studies. 

b span, cm 

Drag
CD drag coefficient, 

q s  

lift coefficient, -Lift 
CL q s  

rolling-moment coefficient , Rolling moment 
CZ qbS 

effective dihedral parameter ,  negative for positive dihedral effect, -ACZ 
clP 4 

Cm pitching-moment coefficient about center of gravity, Pitching moment 
qs1 

longitudinal-stability parameter ,  negative for longitudinal stability, dCm 
d a  

CN normal-force coefficient, Normal force 

Cm . static margin, (5)
cN ,trim ~ C Na,trim 

~ -~ 
Cn yawing -moment coefficient , Yawing moment 

qSb 

ACn 
cnP 4 

side-force coefficient, Side force 
qs 

directional-stability parameter,  positive for directional stability, 
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*CYrate of change of side-force coefficient with sideslip angle, -
Ab 

maximum diameter of basic conical afterbody (fig. 1) 

lift-drag ratio 

model length, cm 

dynamic pressure ,  newtons/meter2 

model base a rea ,  meters2 

location of center of gravity from nose 

vertical distance of center of gravity from center line, positive downward 

angle of attack, deg 

angle of sideslip, deg 

flap deflection angle measured from plane of vehicle surface (sign opposite to 
that of moment produced), deg 

Subscripts : 

192 
shown in figure 1; subscripts omitted for controls at Oo 

3 74 upper flaps 

CONFIGURATION CONCEPT 

The configuration presented in figure 1 is representative of a possible entry vehicle 
in the class providing L/D of 1.5.  This design evolved from a basic body of revolution 
(15' conical forebody and 11.3' conical afterbody) during a packaging study (unpublished) 
of an arrangement with provision for eight crewmen in orbit for 24 hours (fig. 2). The 
lift fans were selected as the propulsive lift system because at the time of the packaging 
studies, hover-time requirements were thought t o  be on the order  of 10 minutes; and for 
hover t imes beyond about 8 minutes, the low fuel consumption of these l i f t  fans gives them 
a total fuel and system weight advantage over turbojets and turbofans. More recent 
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information has indicated that hover-time requirements are on the order of only 2 minutes 
or less. The lift fans were placed in the base, and the tail-sitter entry mode was selected 
because of system space requirements and the fan deployment advantages. Accommoda
tion of the four lift fans in the base of the model required that the gas generators be placed 
exterior to  the basic configuration. The half-cone fairing forward of the gas generator 
and the tangential fairing between the basic model and the gas  generator housing were 
added to make the configuration more streamlined. 

The mission operation could be as follows: The configuration would be boosted into 
orbit; upon completion of the orbital phase and deorbit the vehicle would descend by using 
reaction controls and aerodynamic controls, when they become effective, through the 
hypersonic and high supersonic speed phases. When low supersonic speeds were 
achieved, drogue parachutes would be deployed to slow and stabilize the vehicle through 
the transonic and subsonic speed ranges until the supporting main parachutes were 
deployed. After deployment of the main parachute, the vehicle would assume a tail-sitter 
attitude, and the pilot would rotate t o  a vertical position. The inlets to  the gas generators 
would be opened, and the engine would be started at about 3 kilometers. After engine 
checkout, engine thrust would be increased until hover was achieved; then, transition 
from support by parachute to  support by the deployed lift fan would be made, and the 
vehicle would be maneuvered t o  a vertical landing on the base struts.  

APPARATUS AND METHODS 

Wind Tunnel and Tests 

The tests were conducted in the Langley 20-inch Mach 6 tunnel. This tunnel, which 
is described in detail in reference 2, is a blowdown tunnel exhausting to  the atmosphere. 
For these tests the stagnation pressure was 2 1  atmospheres and the stagnation tempera
ture  477O K. These conditions give a Reynolds number (based on model length) of 
6.3 x lo6. Test  angles of attack were from -3' to  12' and sideslip angles were 0' and 
-50. 

Methods 

A water-cooled six-component strain-gage balance was used to measure the forces 
and moments. The model support system traverses  in the vertical plane and an optical 
system was used to set the model angle of attack, A combination lens and right-angle 
pr ism with a focal length of 1.52 meters  was imbedded in the model surface. The light 
from a point source was reflected from the pr ism onto a screen and the location of the 
reflected light was calibrated against angle of attack. Model base pressures  were mea
sured above and below the sting and the average of these values was used to adjust the 
axial-force coefficient t o  the condition for free-stream static pressure on the base. Mach 
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number was measured for each test point with a total-pressure probe. Lateral and direc
tional stability derivatives were calculated by assuming a linear variation of sideslip 
angle between Oo and -5O. 

Accuracy 

On the basis of balance calibrations, readout accuracy, and dynamic pressure accu
racy, the measured quantities are estimated to  be accurate within the following limits: 

CD. 

CL.  

Cm 

L/D 

ClP 

Cnp 

C
yP 

a,deg 

. . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . .  

*0.0017 


i0.0062 

i0.0008 

i0.0258 

i0.0002 

i0.0002 

iO.0018 

. . . . . . . . . . . . . . . . . . . . .  *0.1 

p , d e g . .  . . . . . . . . . . . . . . . . . . .  +O.l  

6, deg . . . . . . . . . . . . . . . . . . . . .iO.05 

Mach number . . . . . . . . . . . . . . . . .kO.02 

RESULTS AND DISCUSSION 

Longitudinal Data 

Figure 3(a) presents the longitudinal aerodynamic characteristics of the configura
tion with and without trailing-edge flaps. The data of the basic cone-conical-frustum 
(model 1 of ref. 3) a r e  also included for comparison. A s  expected, the higher aspect ratio 
of the present configuration resulted in larger  CL, CD, and L/D. (Compare flagged 
circle with filled circle.) The opposite is true for the longitudinal stability parameter 
-Cmd Both configurations are stable about the realistic center -of -gravity location of 
60 percent Z ;  however, the basic configuration has the higher value of -Cma. 

Figure 3(b) compares the calculated values of the longitudinal data with the mea
sured values. For the basic body the Newtonian computer program (ref. 4) was used for 
the calculations with the following innovations: (1)the Newtonian pressure coefficient was 
replaced by the tangent-cone value on each windward surface element and (2) the zero 
pressure  coefficient was replaced by the Prandtl-Meyer expansion value on each surface 
element in the shadowed region. For  the controls the tangent-cone theory was used to  
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determine the flow conditions immediately ahead of the control, and oblique shock theory 
was used to determine the pressures  on the controls. The calculated values of CL and 
CD were found to  agree very well with the measured values; however, the calculated and 
measured values of Cm were not in very good agreement. 

The configuration is symmetrical about the pitch axis and therefore t r i m s  at 
a! = Oo. The simple flaps were designed t o  t r i m  the present configuration at angles of 
attack up t o  (L/D)max. Figure 3 shows that this t r i m  capability was provided and that 
the control increased the stability. The arrangement of the controls was selected to  allow 
for their  possible use about other axes as well as the pitch axis. However, if roll control 
was desired, the hinge line of the controls should be skewed so  that the plane of the resul
tant force of each control passes through the vehicle center of gravity t o  avoid roll-yaw 
cross  coupling. 

A summary of the longitudinal t r im  characteristics is presented in figure 4 along 
with the maximum L/D data for the basic cone-conical-frustum model from refer
ence 3. The maximum trimmed L/D is 1.57 which is about 10 percent higher than that 
of the basic configuration. The static margin at (L/D)max is 3.5 percent - approxi
mately double that of the basic configuration. If the center of gravity were moved rear
ward to  61 percent I ,  a flap deflection of -100 will provide t r im  a t  (L/D),= = 1.63 
with a static margin of 1.9 percent. This (L/D),= is 14 percent higher than that of 
the basic configuration. As noted previously, the center of gravity was assumed to  be on 
the center line of the body; however, with vertical center-of-gravity offset, tradeoffs of 
trimmed aerodynamic parameters with flap deflections and center-of-gravity location are 
possible. Figure 5 shows the effect of the vertical location of the center of gravity on the 
trimmed longitudinal aerodynamic characteristics for a longitudinal center-of-gravity 
location at 60 percent I .  The maximum L/D (1.63) and highest tr immed CL (0.475) 
are obtained with 63 and 64 = - loo and zcg/I = 0.04. For a uniform wall structure, 
the maximum lower limit of zcg/I would be approximately 0.026; however, with struc
tura l  asymmetry between the windward and leeward surfaces commensurate with the 
asymmetric aerodynamic heating, the center of gravity can be moved to zcg/I = 0.04. 
As noted ear l ie r ,  the maximum L/D can be obtained with a rearward shift of the center 
of gravity; however, some downward shift of the center-of-gravity location may be desir
able because of the accompanying increase of static margin. If so,  the condition of 

(L/D)max and % , m u  could be obtained with a combination of downward and rearward 
shift of the center of gravity. Since the predicted values of the pitching moment miss  the 
t r i m  angle of attack by 20 to  30 (fig. 3(b)), the predicted t r im  values of the aerodynamic 
characteristics were not plotted. 
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Lateral  and Directional Data 

The configuration without controls is directionally stable (c"p positive) and has 

positive dihedral effect (C 
I P  

negative) at all positive angles of attack (fig. 6(a)). The 

deflected controls significantly increase the directional stability. The dihedral effect is 
affected only slightly by the control deflection. Figure 6(b) shows that the C yP and 
CIp of the basic body are well predicted by the computer program, but the C"P is 

greatly overestimated. This result is consistent with the incorrect prediction of the 
pitching moment. The effects of the controls on the lateral-directional stability were not 
calculated. 

CONCLUDING R E W K S  

The aerodynamic characteristics of a modified cone-conical-frustum entry vehicle 
with compact packaging, ample space for eight men and their space-environment support 
equipment, and a propulsive-lift landing system have been determined at Mach 6.0 and a 
Reynolds number based on model length of 6.3 X lo6.  The experimental data show that 
the vehicle equipped with four symmetrically arranged trailing-edge flaps (each 4 percent 
of the base area) is longitudinally stable and controllable and laterally and directionally 
stable about the center of gravity established along the center line by the internal-systems 
arrangement, with center of gravity at 60 percent of the length. Trimmed maximum lift-
drag ratio for  this center of gravity is 1.57 at loo  angle of attack with a static margin of 
3.5 percent. A slight downward and rearward shift of the center-of-gravity location will 
provide t r im  at a lift-drag ratio of 1.63 with a static margin 2 1.9 percent. Theoretical 
calculations made by using a basic Newtonian computer program predicted the forces 
very well but overestimated the moments. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., February 29, 1968, 
124-07 -02 -77 -23. 
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Figure 1.- Model details. (Al l  dimensions i n  cm.) 



CL 
0 

Drogue parachute 

Reaction j e t s  

Communications 

Environmenta1 

Control valve 

Figure 2.- Equipment arrangement for 8 men i n  orbit  for 24 hours. 
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Figure 3.- Longitudinal aerodynamic data, stability axis. 
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(b) Comparison of experimental and calculated data. 

Figure 3.- Concluded. 

12 


. _ _  



I I I I I I I I I I I 0 

1.6 


1.2 


. 4  

0 

. 4  

.3 


‘L, trim 

. 2  

0 

0 

-10 

‘trim 

-20 

-30 

0 


-.02 


‘In 
‘N, trim 

-.04 

-

.3 


-
;2 

‘D, trim 

.1 


0 

-Present configuration 

+Basic cone-conical-frustum (ref.  3) 

I 	 I I I I 1 1 - 1 I I I 

2 4 6 8 10 2 

Figure 4.- Trim characteristics. xcp = 60 percent 1 .  

13 




0I I I 

B 3 ,  	 = -I0-& 
b = -20--.001 


a 
trim '

deg cm 
a,trim 

- .002 

-. 003 ' I I I 

cL,trim 

Figure 5.- Effect of vert ical location of center of gravity on longitudinal t r i m  characteristics. xcg = 60 percent 1. 
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(a) Experimental data. 

Figure 6.- Lateral and direct ional stability derivatives, body axis. 
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Figure 6.- Concluded. 
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